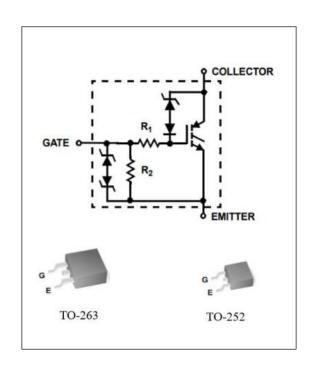


1. Description

Advantages

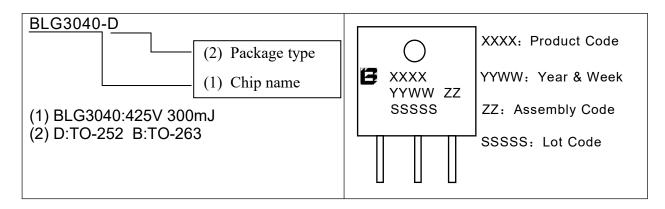
BLG3040 is obtained by advanced ignition IGBTs technology which reduce the conduction loss, enhance the SCIS capability. Internally integrated diodes can provide the voltage clamping without the need for external components. The IGBT is suitable device for automotive ignition circuits, specifically as a coil driver.

> Key Characteristics


Parameter	Value	Unit
V _{CES.Typ}	425	V
V _{CE(sat).Typ}	1.25	V
E _{SCIS} @T _J =25 ℃	300	mJ
ESD	4	kV

> Features

- Low V_{CEsat}
- High SCIS Energy
- Logic Level Gate Drive
- AEC-Q101 Qualified


> Applications

- Automotive ignition Coil Driver Circuits
- Coil-On Plug Application

Ordering	Informati	ons
O a do i i i g	monnat	

Ordering Codes	Package	Product Code	Packing
BLG3040-D	TO-252	G3040	Tape Reel
BLG3040-B	TO-263	G3040	Tape Reel

2. Absolute Ratings

at T_C = 25°C, unless otherwise specified

Symbol	Parameter	Rating	Units
V _{CES}	Collector-Emitter Voltage (I_C =2mA, R_G =1k Ω)	455	V
V _{ECS}	Emitter to Collector Voltage (I _C =10mA)	24	V
E	SCIS Energy@ T _J =25 °C,I _{SCIS} =14.2A,L=3mH,Rg=1KΩ	300	mJ
Escis	SCIS Energy@ T _J =150 °C,I _{SCIS} =10.6A,L=3mH,Rg=1KΩ	170	mJ
l _a	Collector Current @T _C =25 °C	21	Α
Ic	Collector Current @Tc=100 °C	17	Α
ESD	Electrostatic Discharge Voltage (HBM) at $100 pF, 1500 \Omega$	4	kV
V_{GEM}	Gate- Emitter Voltage Continuous	±10	V
P _D	Power Dissipation @TC = 25 °C	150	W
T _J , T _{stg}	Operating Junction and Storage Temperature Range	175, -40 to 175	°C
TL	Maximum Temperature for Soldering	260	°C

3. Thermal Characteristics

Symbol	Parameter	Package	RATINGS	Units
Rejc	Junction-to-Case	TO-252/TO-263	1.0	°C /W

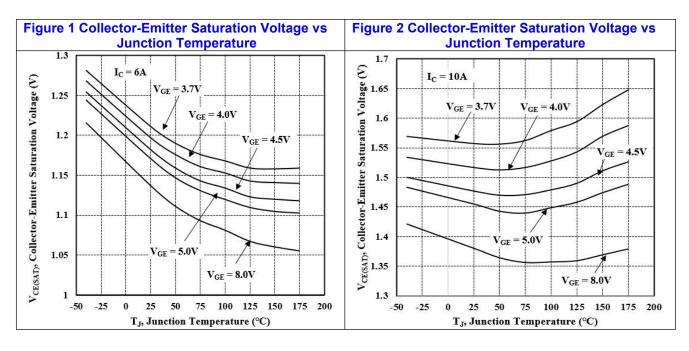
4. Electrical Characteristics

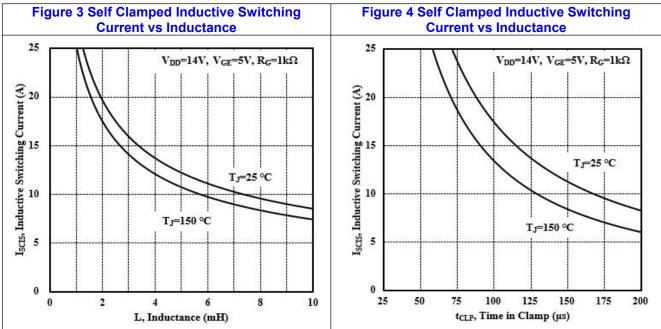
at $T_C = 25$ °C, unless otherwise specified

OFF Characteristics						
Cumbal	Darameter	Test	Test		6	11:4
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
BV _{CER}	Collector to Emitter Breakdown Voltage	V_{GE} =0V, I_{C} =2mA, R_{G} =1k Ω	395	425	455	V
BV_CES	Collector to Emitter Breakdown Voltage	V_{GE} =0V, I_{C} =10mA, R_{G} =0 Ω	410	440	470	V
BV_{ECS}	Emitter to Collector Breakdown Voltage	V _{GE} =0V, I _C =-75mA	30			V
BV_GES	Gate to Emitter Breakdown Voltage	I _{GES} =±2mA	±12	±14		V
I	Collector to Emitter	V_{CE} =250 V , R_{G} =1 $k\Omega$, T_{J} =25 $^{\circ}$ C			25	μA
ICER Leakage Current	Leakage Current	V_{CE} =250V, R _G =1k Ω , T _J =150°C			1	mA
	Emitter to Collector	V _{EC} =24V, T _J =25°C			1	mA
I _{ECS}	Leakage Current	V _{EC} =24V, T _J =150°C			40	mA

R ₁	Series Gate Resistance		70		Ω
R ₂	Gate to Emitter Resistance	10		26	kΩ

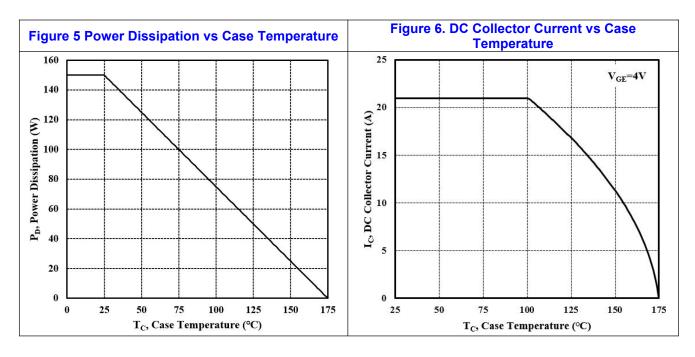
ON Characteristics						
Symbol	Parameter	Test Conditions	,	Values		Units
Cyllibol	i arameter	103t Conditions	Min.	Тур.	Max.	Offics
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} =4V, I _C =6A, T _J =25°C		1.20	1.60	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} =4.5V,I _C =10A,T _J =175°C		1.52	1.80	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} =4.5V,I _C =15A,T _J =175°C		1.90	2.20	V
V _{GE(TH)}	Gate Threshold Voltage	V _{CE} = V _{GE} , I _C = 1mA	1.30		2.20	V
Pulse width	Pulse width tp≤300μs, δ≤2%					

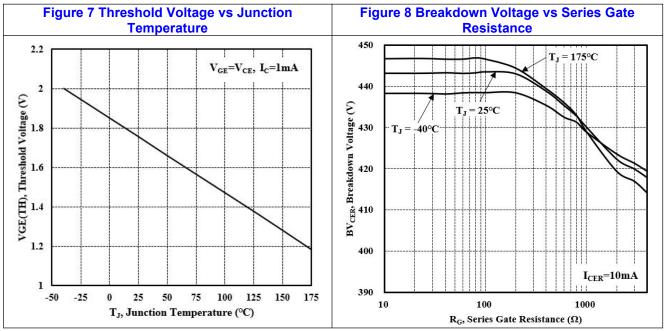

Dynamic Characteristics						
Symbol	Donamatan Taat Canditian			Values		Units
Syllibol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
C _{iss}	Input Capacitance	\/ - 0\/		1250		
Coss	Output Capacitance	$V_{GE} = 0V$ $V_{CE} = 25V$		69		pF
Crss	Reverse Transfer Capacitance	f=1.0MHz		15		•
Q_g	Total Gate Charge	I _C =10A, V _{CE} =12V, V _{GE} =5V		7.2		nC


Switching Characteristics						
Symbol	Parameter	Test Conditions		Values		Units
Syllibol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
t _{d(ON)}	Turn-on Delay Time	$V_{CE} = 14V, RL = 1\Omega,$		0.85	4	
tr	Rise Time	V_{GE} = 5V, R_{G} =1k Ω , T_{J} =25°C		2.50	7	
t _{d(OFF)}	Turn-Off Delay Time	$V_{CE} = 300V, L=500\mu H,$ $V_{GE} = 5V, R_{G} = 1k\Omega,$		4.40	15	μs
t _f	Fall Time	T _J =25°C		1.90	15	

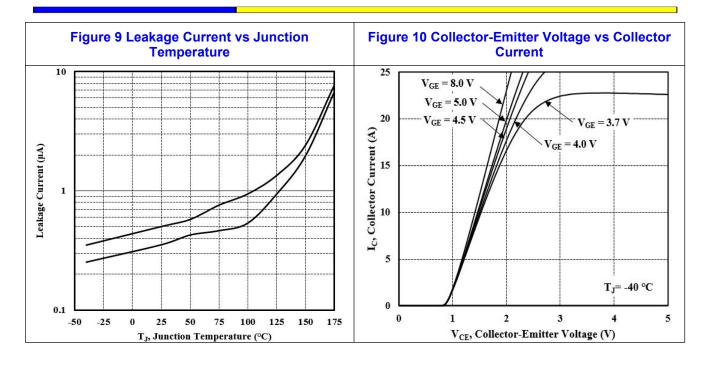
©2011 Belling All Rights Reserved

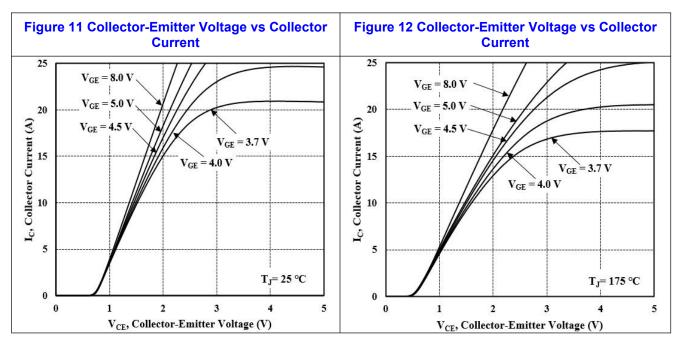
5. Characteristics Curves

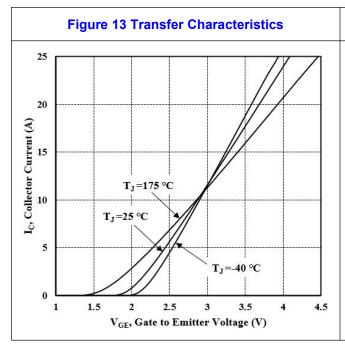


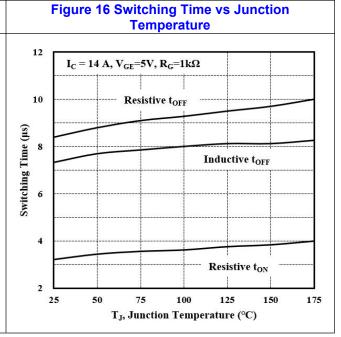


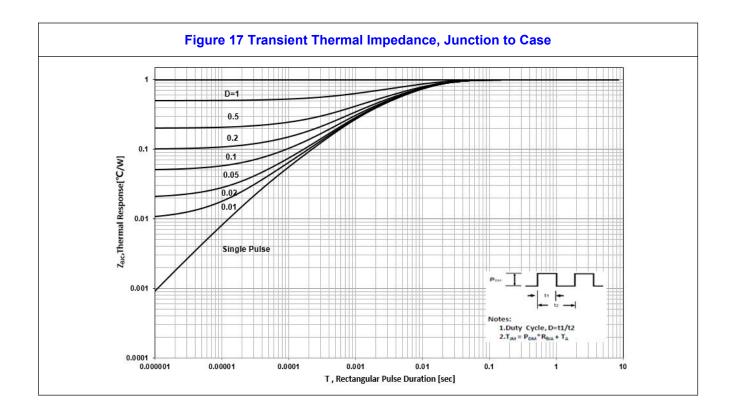
GBT

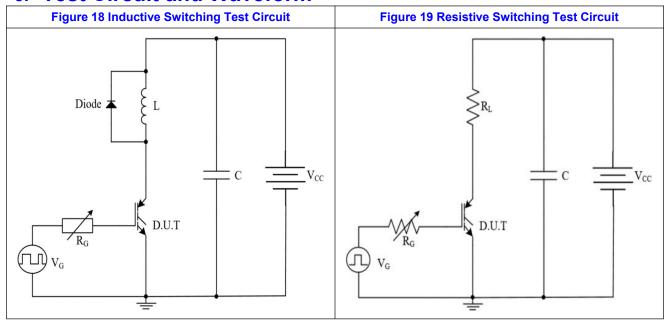


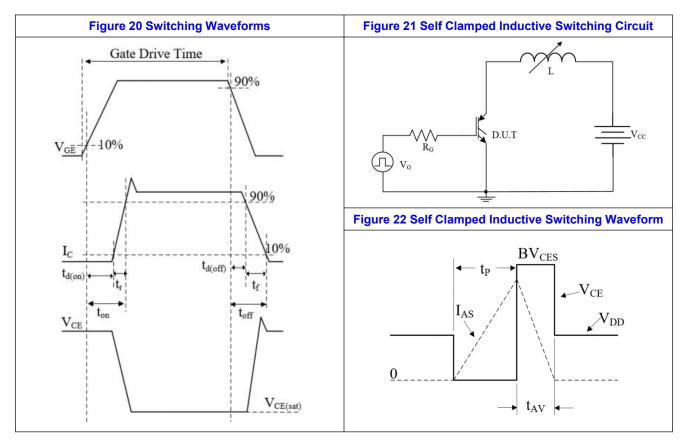


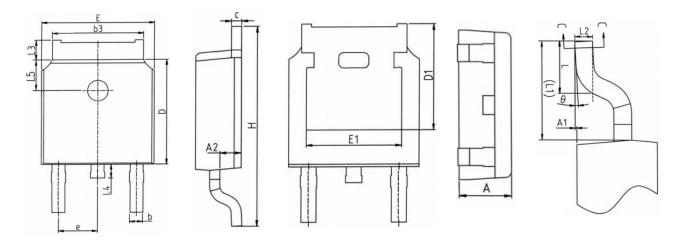




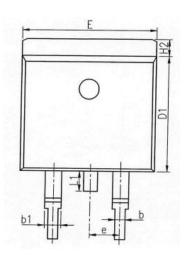


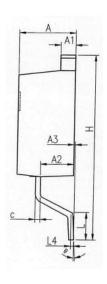





6. Test Circuit and Waveform

7. Package Description


TO-252 Package


SYMBOL	Values(mm)			
STIVIDUL	MIN	NOM	MAX	
Α	2.20	2.30	2.38	
A1	0.00	-	0.12	
A2	0.97	1.07	1.17	
b	0.68	0.78	0.90	
b3	5.20	5.33	5.46	
С	0.43	0.53	0.61	
D	5.98	6.10	6.22	
D1		5.30REF		
Е	6.40	6.60	6.73	
E1	4.63	-	-	
е		2.286BSC		
Н	9.40	10.10	10.50	
L	1.38	1.50	1.75	
L1		2.90REF		
L2		0.51BSC		
L3	0.88	-	1.28	
L4	0.50	-	1.00	
L5	1.65	1.80	1.95	
θ	0°	-	8°	

TO-263 Package

Itama		Values (mm)			
Items	MIN	NOM	MAX		
А	4.37	4.57	4.77		
A1	1.22	1.27	1.42		
A2	2.49	2.69	2.89		
A3	0.00	0.13	0.25		
b	0.70	0.81	0.96		
b1	1.17	1.27	1.47		
С	0.30	0.38	0.53		
D1	8.50	8.70	8.90		
D4	6.60	-	-		
E	9.86	10.16	10.36		
E5	7.06	-	-		
е		2.54 BSC			
Н	14.70	15.10	15.50		
H2	1.07	1.27	1.47		
L	2.00	2.30	2.60		
L1	1.40	1.55	1.70		
L4	0.25 BSC				
θ	0°	5°	9°		

Revision History:

BLG3040 Revision: 2025-04-01, Rev. 2.4(A)

Previous Revision

Revision	Date	Revision Date Subjects (major changes since last revision)
1.0	2019-10-21	-
1.1	2021-07-06	Some key Information has been added below.
		(1) Switching characteristics.
		(2) Self-clamped Inductive switching current curves.
		(3) Breakdown voltage curves have been added.
2.0	2022-03-31	The major changes are as follow.
		(1) In Section 4, the data of ON characteristics and dynamic characteristics have been updated.
		(2) In Section 5, P _D vs T _J curve and I _{SCIS} vs T _{CLP} curve have been added.
		(3) In Section 5, all figures of characteristics curves have been
		reformatted and adjusted in sequence. (4) In Section 6, all figures of test circuit and typical waveform
		have been redrawn and rearranged.
		(5) In Section 7, all diagrams of different package and some
		dimensions information have been redrawn and updated.
		(6) Formatting and spelling errors in this document have been
		corrected.
		(7) Revision history is firstly added in the BLG3040 datasheet .
2.1	2024-01-31	The major changes are as follow.
		(1) In Section 4, the data of OFF characteristics has been
		updated.
		(2) the CONTACT has been updated.
		(3) The catalog index has been updated.
2.2	2024-07-11	The major changes are as follow.
		(1) Corrected the value of V _{CES} on the homepage and marked ' _{Typ.'} .
		(2) Updated the testing conditions and values for V _{CES} in '2.
		Absolute Ratings' on page 2.
2.3	2024-10-23	The major changes are as follow.
		(1) Additional description of ESCIS: using 3mH inductor
		and 1KΩ Rg.
		(2) Additional description of Operating Junction.
2.4	2025-04-01	The major changes are as follow.
		(1) Updated the package outline drawing of TO-263.
		(2) Updated the package outline drawing of TO-252.

12/13

BLG3040

GBT

We Listen to Your Comments

If there is any information within this document that you feel is wrong, unclear, or missing at all, please contact us.

Your feedback will help us to continuously improve the quality of this document.

Published by Shanghai Belling Co., Ltd. 810, Yishan Road, Shanghai, China © 2011 Belling All Rights Reserved.

NOTE:

- Any use beyond the maximum ratings of the device in performance may cause damage to the
 device or even the permanent failure, which may affect the dependability of the machine. Please
 do not exceed the absolute maximum ratings of the device when designing circuit.
- 2. When installing the heat sink, please pay attention to the torsional moment and the smoothness of the heat sink.
- 3. Semiconductor device is sensitive to the ESD, it is necessary to protect the device from being damaged by the ESD when using it.
- 4. Shanghai Belling reserves the right to make changes in this specification sheet and is subject to change without prior notice.

CONTACT:

上海贝岭股份有限公司

地址:上海市宜山路810号

邮编: 200233

联系方式: https://www.belling.com.cn/contact.html